134 research outputs found

    Model checking for cloud autoscaling using WATERS

    Get PDF
    This thesis investigates the use of formal methods to verify cloud system designs against Service Level Agreements (SLAs), towards providing guarantees under uncertainty. We used WATERS (the Waikato Analysis Toolkit for Events in Reactive Systems), which is a model-checking tool based on discrete event systems. We created models for one aspect of cloud computing, horizontal autoscaling, and used this to verify cloud system designs against an SLA that specifies the maximum request response time. To evaluate the accuracy of the WATERS models, the cloud system designs are simulated on a private Kubernetes cluster, using JMeter to drive the workload. The results from Kubernetes are compared to the verification results from WATERS. A key research goal was to have these match as closely as possible, and to explain the discrepancies between the two. This process is followed for two applications: a default installation of NGINX, a web server with a fast but variable response time, and a hand-written Node.js program enforcing a fixed response time. The results suggest that WATERS can be used to predict potential SLA violations. Lessons learned include that the state space must be constrained to avoid excessive checking times, and we provide a method for doing so. An advantage of our model checking-based technique is that it verifies against all possible patterns of arriving requests (up to a given maximum), which would be impractical to test with a load testing tool such as JMeter. A key difference from existing work is our use non-probabilistic finite state machines, as opposed to probabilistic models which are prevalent in existing research. In addition, we have attempted to model the detail of the autoscaling process (a “white-box” approach), whereas much existing research attempts to find patterns between autoscaling parameters and SLA violation, effectively viewing autoscaling as a black-box process. Future work includes refining the WATERS models to more closely match Kubernetes, and modelling other SLO types. Other methods may also be used to limit the compilation and verification time for the models. This includes attempting different algorithms and perhaps editing the models to reduce the state space

    Capital Gains and the Capital Asset Pricing Model

    No full text
    This paper shows that, in the presence of differential taxation of ordinary income and capital gains, use of the Officer (1994) version of the Capital Asset Pricing Model can result in significant misestimation of the cost of equity capital. In particular, with a high dividend yield, the cost of equity may be underestimated by four percentage points. Underestimation is of particular significance in the context of setting output prices for regulated utility firms

    Cell Adhesion and Its Endocytic Regulation in Cell Migration during Neural Development and Cancer Metastasis

    Get PDF
    Cell migration is a crucial event for tissue organization during development, and its dysregulation leads to several diseases, including cancer. Cells exhibit various types of migration, such as single mesenchymal or amoeboid migration, collective migration and scaffold cell-dependent migration. The migration properties are partly dictated by cell adhesion and its endocytic regulation. While an epithelial-mesenchymal transition (EMT)-mediated mesenchymal cell migration requires the endocytic recycling of integrin-mediated adhesions after the disruption of cell-cell adhesions, an amoeboid migration is not dependent on any adhesions to extracellular matrix (ECM) or neighboring cells. In contrast, a collective migration is mediated by both cell-cell and cell-ECM adhesions, and a scaffold cell-dependent migration is regulated by the endocytosis and recycling of cell-cell adhesion molecules. Although some invasive carcinoma cells exhibit an EMT-mediated mesenchymal or amoeboid migration, other cancer cells are known to maintain cadherin-based cell-cell adhesions and epithelial morphology during metastasis. On the other hand, a scaffold cell-dependent migration is mainly utilized by migrating neurons in normal developing brains. This review will summarize the structures of cell adhesions, including adherens junctions and focal adhesions, and discuss the regulatory mechanisms for the dynamic behavior of cell adhesions by endocytic pathways in cell migration in physiological and pathological conditions, focusing particularly on neural development and cancer metastasis

    Evidence of Distinct Tumour-Propagating Cell Populations with Different Properties in Primary Human Hepatocellular Carcinoma

    Get PDF
    Increasing evidence that a number of malignancies are characterised by tumour cell heterogeneity has recently been published, but there is still a lack of data concerning liver cancers. The aim of this study was to investigate and characterise tumour-propagating cell (TPC) compartments within human hepatocellular carcinoma (HCC).After long-term culture, we identified three morphologically different tumour cell populations in a single HCC specimen, and extensively characterised them by means of flow cytometry, fluorescence microscopy, karyotyping and microarray analyses, single cell cloning, and xenotransplantation in NOD/SCID/IL2Rγ/⁻ mice.The primary cell populations (hcc-1, -2 and -3) and two clones generated by means of limiting dilutions from hcc-1 (clone-1/7 and -1/8) differently expressed a number of tumour-associated stem cell markers, including EpCAM, CD49f, CD44, CD133, CD56, Thy-1, ALDH and CK19, and also showed different doubling times, drug resistance and tumorigenic potential. Moreover, we found that ALDH expression, in combination with CD44 or Thy-1 negativity or CD56 positivity identified subpopulations with a higher clonogenic potential within hcc-1, hcc-2 and hcc-3 primary cell populations, respectively. Karyotyping revealed the clonal evolution of the cell populations and clones within the primary tumour. Importantly, the primary tumour cell population with the greatest tumorigenic potential and drug resistance showed more chromosomal alterations than the others and contained clones with epithelial and mesenchymal features.Individual HCCs can harbor different self-renewing tumorigenic cell types expressing a variety of morphological and phenotypical markers, karyotypic evolution and different gene expression profiles. This suggests that the models of hepatic carcinogenesis should take into account TPC heterogeneity due to intratumour clonal evolution

    Validating layer-specific VASO across species

    Get PDF
    Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI

    Anterolateral Ligament Expert Group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament - deficient knee

    Get PDF
    Purpose of this paper is to provide an overview of the latest research on the anterolateral ligament (ALL) and present the consensus of the ALL Expert Group on the anatomy, radiographic landmarks, biomechanics, clinical and radiographic diagnosis, lesion classification, surgical technique and clinical outcomes. A consensus on controversial subjects surrounding the ALL and anterolateral knee instability has been established based on the opinion of experts, the latest publications on the subject and an exchange of experiences during the ALL Experts Meeting (November 2015, Lyon, France). The ALL is found deep to the iliotibial band. The femoral origin is just posterior and proximal to the lateral epicondyle; the tibial attachment is 21.6 mm posterior to Gerdy's tubercle and 4-10 mm below the tibial joint line. On a lateral radiographic view the femoral origin is located in the postero-inferior quadrant and the tibial attachment is close to the centre of the proximal tibial plateau. Favourable isometry of an ALL reconstruction is seen when the femoral position is proximal and posterior to the lateral epicondyle, with the ALL being tight upon extension and lax upon flexion. The ALL can be visualised on ultrasound, or on T2-weighted coronal MRI scans with proton density fat-suppressed evaluation. The ALL injury is associated with a Segond fracture, and often occurs in conjunction with acute anterior cruciate ligament (ACL) injury. Recognition and repair of the ALL lesions should be considered to improve the control of rotational stability provided by ACL reconstruction. For high-risk patients, a combined ACL and ALL reconstruction improves rotational control and reduces the rate of re-rupture, without increased postoperative complication rates compared to ACL-only reconstruction. In conclusion this paper provides a contemporary consensus on all studied features of the ALL. The findings warrant future research in order to further test these early observations, with the ultimate goal of improving the long-term outcomes of ACL-injured patients. Level of evidence Level V-Expert opinion

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore